Concrete Nation
Bright future for ancient material
Alexandra Goho

Each year, billions of tons of concrete become the stuff of buildings, highways, dams, sidewalks, and even artworks.
The list goes on. Not only is the material ubiquitous, it has a long history. The Romans invented cement-based concrete
more than 2,000 years ago and used the material to build architectural masterpieces such as the Pantheon. To Christian
Meyer, a structural engineer at Columbia University, there's just no question about it: "Concrete is the world's most
important material."

And it's one of the simplest. A typical mix of concrete consists of 60 to 75 percent sand and gravel or crushed stone, 15
to 20 percent water, and 10 to 15 percent cement, which is prepared by roasting limestone, clay, and other ingredients.
The cement is the paste that binds the components into concrete.

There are many simple ways to modify the properties of concrete. Tweaking the ratio of the ingredients can change the
material's strength or roughness, for instance. Modern concrete also contains chemical additives that affect the
material's physical properties, such as the fluidity or the time it takes to harden.

Scientists and architects have been pushing the limits of this humdrum material to give it new features and creative
functions. "Liquid Stone," a current exhibit at the National Building Museum in Washington, D.C., portrays the future of
concrete. The show includes ultrahigh-performance concrete that bends like metal and another type of concrete that
forms translucent blocks.

In pursuit of environmentally friendly construction materials, engineers are also giving concrete a hard look. Already
among the most essential construction materials, concrete now seems poised to take on new roles.

More muscle

Major suppliers of construction materials take a pragmatic approach to improving concrete. These firms are coming up
with a stream of new mixtures, such as ultrahigh-performance, corrosion-resistant, longer-lasting concrete. "The future
will see an increased use of [these materials]," says Steve Kosmatka of the Portland Cement Association in Skokie, Ill.

FACING THE FUTURE. A light-rail transit station in Calgary, Alberta, (above) and face sculptures adorning a
condominium complex in Vancouver, British Columbia, (below) are made from new high-tech concrete materials.

For instance, consider some of the new materials developed by concrete giant Lafarge, headquartered in Paris.
"Governments are finding they're having to spend more and more on maintaining their infrastructure," says Vic Perry of
Lafarge North America. "That means you need to build things that last longer and are cheaper to maintain." He's talking
about big things: bridges, highways, and buildings.

Perry leads the company's North American operation producing Ductal, one of Lafarge's newest concrete products.
Unlike regular concrete, which is brittle and can rupture suddenly under a heavy load, Ductal can bend. "It will deflect
and show signs of cracking before it fails," says Perry. "You can see in advance that you've got a problem."


What's more, Ductal is five times as strong as regular concrete. That extra oomph comes from the addition of small
fibers dispersed throughout the matrix. These fibers, made of either steel or polymer, reinforce the concrete and
eliminate the need for reinforcing steel bars, or rebar. A bridge made out of Ductal can be lighter and thinner than a
traditional bridge, Perry says.

Eliminating the need for steel bars has other advantages, including lengthening the lifetime of structures. Consider the
deck of a bridge. In the winter, when ice-clearing salt dissolves and seeps into the concrete, it corrodes the steel. The
corrosion causes the concrete to detach itself from the reinforcing metal and to crack. A conventional concrete deck
needs major repairs or reconstruction after about 25 years, says Perry. "A Ductal deck should last at least twice as
long," he adds.

The material has already found its way into several pedestrian bridges around the world, as well as a light rail transit
station in Calgary, Alberta. The canopies that form the roof over the station's platform and the roof's support columns
are made entirely of Ductal. The canopies provide protection from the elements, can withstand high winds, and support
heavy snow loads.

Normally, after concrete is poured, the mason passes a vibrating machine over the surface to squeeze out all the air
bubbles. It's a loud and time-consuming process. However, Agilia contains a mix of additives: superplasticizers that
keep the concrete fluid and other chemicals that cut down on the water needed. These enable the concrete to
consolidate under its own weight without mechanical vibration.

Because the self-consolidating concrete flows when poured, it can fill intricate molds and wrap around complex
structures all the while leaving a smooth finish. The increased fluidity also makes the material ideal for construction in
areas of high seismic activity, where structures usually are heavily reinforced with rebar, says Jack Holley, vice
president for new product development at Lafarge North America. Trying to use vibration to consolidate standard
concrete riddled with a mesh of rebar can be awkward, if not impossible, he says.

Let it shine

Ductal and Agilia may be high-tech, but they're destined for concrete's primary role as a structural material. Will Wittig,
who teaches architecture at the University of Detroit Mercy in Michigan, wanted to take this "heavy and monolithic"
construction material and turn it into something "more ethereal." So, he set out to make concrete translucent.

Says Wittig: "I wanted to challenge our assumptions about what concrete is or what it can do."

In pursuit of that goal, Wittig mixed white silica sand and white Portland cement, varying the ratios to get a paste that
cures in thinner preparations than standard concrete mixes do. He added short strands of fiberglass to reinforce the

Next, Wittig built a table topped with a Plexiglas square mold into which he poured his concrete mixture. He made a
number of prototypes, always pushing for panels that were thinner, but not so thin that they would break. The final
concrete panels were thin as a coin at the centers and close to a centimeter thick at the edges.

The panels were originally meant as a shell for a one-room garden house that Wittig had designed several years ago.
"My hope was that [the panels] would be translucent enough so that on a sunny day, you could sit inside and have
enough light to read a book," says Wittig.

His thinnest sheets of the new concrete transmit about 1 percent of sunlight. That would be in the ballpark of providing
sufficient light to create a glow inside the structure, says Wittig. However, he never built the building—lab tests
showed that the panels were too fragile to withstand wind and rain.

OPTICAL TRICKS. A translucent concrete material contains glass optical fibers that transmit light through the entire
length of the block. It can bring sunlight through a wall.

Instead of making concrete itself translucent, a small company in Germany is taking a different tack: incorporating
transparent materials into the concrete. LiTraCon, based in Aachen, has developed a concrete that contains glass
optical fibers the thickness of a hair. They transmit light from one side of the material to the other. Hungarian architect
Áron Losonczi—who, like Wittig, experiments with construction materials—invented the translucent concrete.

To ensure that the ends of each fiber make contact with the surfaces on both sides of the material, blocks of concrete
are built in stages. First, a thin layer of concrete is poured into a long, narrow mold. Then, a layer of optical fibers is laid
along the length of the mold. After several repetitions, the resulting long beam can be cut into short, rectangular
building blocks riddled with the thin light pipes, says LiTraCon's Andreas Bittis.

The fiber diameters range from 2 microns to 2 millimeters. By using fibers of different diameters, LiTraCon designers
can achieve different illumination effects. Varying the size of the blocks, however, doesn't change the effect. So far,
LiTraCon has made continuous concrete beams up to 20 meters long, and the fibers transmit light the entire length.

With these blocks, architects can design and build a large variety of structures, ranging from translucent concrete
walls to floors lit from below. LiTraCon has already received a number of requests from architects interested in the
material, says Bittis. One firm in New York has proposed using the new concrete in its design of a police college in
Kuwait City. Because concrete is an excellent insulating material, the building would protect against the desert heat
while letting through some sunshine.

Concrete cleanup

Although some new types of concrete might be taking on ethereal traits, traditional concrete continues to weigh very
heavily on the planet. Each year, the United States alone lays down 500 million tons of concrete. "That has a
tremendous impact on the environment," says Columbia University's Christian Meyer. Sand, gravel, or crushed stone
are extracted from natural resources. "Entire mountains can be taken away to satisfy the voracious appetite of the
concrete industry," says Meyer.

Another enormous toll on the environment comes from the carbon dioxide—one of the main global warming gases—
released during cement production. Heating limestone and clay at high temperatures requires burning a substantial
amount of fossil fuel. Also, carbon dioxide is released from a chemical reaction that occurs when the limestone and
clays are combined.

The production of a ton of Portland cement—the most common type—releases about a ton of carbon dioxide into the
atmosphere, says Meyer. The cement industry contributes 7 percent of the global human production of carbon dioxide,
he adds.

Meyer has been active in promoting the so-called green building movement. Much of his research focuses on
ingredients, mainly recycled materials that can substitute for the traditional components of concrete. For instance, his
group has made a glass-based concrete by replacing all or part of the sand and gravel elements with crushed recycled

Normally, when glass is mixed with cement, the cement's alkali reacts with the glass' silica. This creates a gel in the
final product that swells in the presence of moisture and cracks the concrete. The Columbia group replaced part of the
cement with the clay mineral metakaolin, which absorbs the alkali ions so that they don't react with the silica. Wausau
Tile of Wausau, Wis., licensed Meyer's concrete-glass invention and is now producing colorful floor tiles made with
recycled glass.

To replace the entire cement component of concrete, Meyer is looking at yet another unlikely source: dredged material
from New York City harbor. The Port Authority scoops out material from the harbor to keep the shipping lanes open.
Instead of dumping vast amounts of the material in a landfill, Meyer is working on ways of blending the dredged
products into concrete after treating the hazardous ingredients to render them harmless.

Surprisingly, his group has found that various properties of the clay minerals in dredged harbor sediment are superior
to those of clay minerals on land. In preliminary tests, the researchers found that concrete mixed with dredged material
could survive 100 times as many freeze-thaw cycles as concrete without the dredged substance can.

SACRED SURFACES. The modern church Dives in Misericordia located in Rome, is made from a self-cleaning concrete
that breaks down atmospheric pollutants that would otherwise darken the surface over time.
G. Basilico/Italcementi

New forms of concrete might also abate environmental pollution. Scientists at the Italcementi Group in Bergamo, Italy,
have developed a self-cleaning concrete that keeps buildings from turning black from pollutants in the atmosphere.
Luigi Cassar and his colleagues at the research branch of Italcementi made the concrete by adding particles of the
white pigment titanium dioxide to the cement component.

When titanium dioxide absorbs ultraviolet light, it becomes highly reactive and breaks down pollutants that come into
contact with the concrete's surface. The reactive material can kill bacteria and fungi and also break down pollutants
such as nitric oxide, sulfur dioxide, and many volatile organic compounds that contribute to concrete's darkening.

The self-cleaning concrete has already been used in several new buildings, including a modern church in Rome called
the Dives in Misericordia. "The goal was to create a material for a church that would last, say 1,000 years, and to have
a surface that remains the same color," says Cassar.

The material has applications beyond keeping concrete surfaces bright. Cassar's group has found that the concrete can
actually clean the air. The company is investigating coating buildings and roads with the photocatalytic material.
Computer models of the material and urban pollution predict that covering 10 to 15 percent of the roads and building
surfaces in a city such as Milan, Italy could reduce air pollution by 40 to 50 percent, Cassar's group calculates.

The pursuit of improved concrete materials continues. How much of the world adopts these new types of concrete
depends on numerous factors, including whether the materials meet technical needs, how much they cost, and whether
big-time architects and designers adopt them.

The efforts to bring concrete to new heights of function and form, however, is almost certain to transform the traditional
perception of concrete as a cold, drab, low-tech material. Its use is likely to extend as far into the future as it reaches
into the past.
Concrete Countertop
Industry Info
Designer Concrete Counters
Of Florida                         772 584 0061

The labor market is another driving force behind concrete
innovations. Many people in the industry are anticipating or already
witnessing a shortage of laborers who mix, pour, and otherwise
work with concrete. The average age of these workers is increasing
as few young people enter the field. "So, you have to look at new
methods and materials to reduce the amount of labor needed to build
things," says Perry.

In response to this concern, Lafarge has developed Agilia.
According to the company, laying a 60-cubic-meter slab of regular
concrete—enough for a floor in an office building—requires eight
people and takes about 8 hours. Placing the same-size slab of Agilia
could require as few as two people and take a couple of hours.
At "Designer Concrete
Counters LLC FL." we
specialize in custom
one of a kind Concrete
Countertop creations.
Along with all facets of
Decorative Concrete
Coatings, Flooring
Overlays, Concrete
stamping, Acid
Staining, Epoxy Floors
Fireplace Surrounds,
Driveways, Patio
Furniture and more.
Concrete Kitchen Counters       Outdoor Kitchens    Concrete Bathroom Vanities       Concrete Flooring Overlays

Concrete Fireplace Surrounds      Concrete Bistro Tables     Concrete Driveway Stamping      Epoxy Coatings